用户,您好,欢迎您进入NSTL重点领域信息门户! 登录 | 注册  帮助中心
重点领域信息门户
您当前的位置: 首页 > [2021年第3期]情报条目详细信息

编译内容

编译服务: 图书情报 编译者: luoluo 编译时间: Apr 11, 2021 浏 览 量: 9

2021年1月15日,情报理论与实践出版了一篇名为“数据科学任职要求挖掘下的情报学教育及人才培养”的文章。文章具体摘要如下:

[目的/意义]基于数据科学与情报学领域的密切联系,对数据科学任职要求知识进行深入挖掘,有利于掌握社会对于情报学相关领域人才的需求,从而完善情报学教育的培养方案,帮助实现社会需求与高校教育的良好对接。[方法/过程]文章采集了国内主流招聘网站中数据科学相关工作岗位的招聘信息,并对数据进行解析、去重等清洗工作,对招聘信息中的任职要求实体进行人工标注,比较了LSTM,BiLSTM-CRF和BERT三种深度学习模型应用于实体识别的效果。[结果/结论]结果表明,BiLSTM-CRF模型对任职要求实体的识别效果最好,相较于其他两种深度学习模型具有一定的优势。文章根据抽取出的任职要求实体从实践能力、学历要求、脚本语言、数据处理、综合素质等方面总结了目前情报学人才应当具备的技能和素质,并由此提出了针对情报学教育的人才培养方案。

  
提供服务
导出本资源