用户,您好!欢迎您进入外来生物入侵平台!登录 | 注册  NSTL重点领域信息门户  帮助中心  RSS
  您当前的位置: 首页 > 网页快照
F.F.AAF.">A.F.">G.obC.">al mitigation potentiC.">al of carbon stored in harvested wood products | PNF.AAF.">A.
F.AAF.">A.63F.">F.F.AAF.">A.F.">S.gnificance.F.AAF.">C.rbon stored within harvested wood products (F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s) may be a tool to mitigate climate change, yet its globC.">al potentiC.">al as a carbon sink is unknown and difficult to assess. F.F.AAF.">A.F.">W. show that the globC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool was a net sink of 335 M. of 6633">C.2 equivC.">alent (6633">C.2e)⋅y−1 in 2015 and as much as 441 M. of 6633">C.2e⋅y−1 by 2030, offsetting substantiC.">al amounts of industriC.">al process emissions, but only in some countries, and the globC.">al contribution is minor, even in a scenario of favorable conditions. F.rthermore, economic shocks can turn a country’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool into a net source of carbon. F.AAF.">I. conclusion, carbon stored within end-use F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s varies widely across countries and depends on evolving market forces.F.AAF.">A.stract.F.AAF.">C.rbon stored in harvested wood products (F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s) can affect nationC.">al greenhouse gas (F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G. inventories, in which the production and end use of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s play a key role. The F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange (F.AAF.">I.C.) provides guidance on F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon accounting, which is sensitive to future developments of socioeconomic factors including population, income, and trade. F.F.AAF.">A.F.">W. estimated the carbon stored within F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s from 1961 to 2065 for 180 countries following F.AAF.">I.C. carbon-accounting guidelines, consistent with F.od and F.AAF.">A.riculture Organization of the D.78">C.">United Nations (C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A.) historicC.">al data and plausible futures outlined by the shared socioeconomic pathways. F.F.AAF.">A.F.">W. found that the globC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool was a net annuC.">al sink of 335 M. of 6633">C.2 equivC.">alent (6633">C.2e)⋅y−1 in 2015, offsetting substantiC.">al amounts of industriC.">al processes within some countries, and as much as 441 M. of 6633">C.2e⋅y−1 by 2030 under certain socioeconomic developments. F.rthermore, there is a considerable sequestration gap (71 M. of 6633">C.2e⋅y−1 of unaccounted carbon storage in 2015 and 120 M. of 6633">C.2e⋅y−1 by 2065) under current C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance, as traded feedstock is ineligible for nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories. F.F.AAF.">A.F.">F.AAF.">H.wever, even under favorable socioeconomic conditions, and when accounting for the sequestration gap, carbon stored annuC.">ally in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s is <1% of globC.">al emissions. F.rthermore, economic shocks can turn the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool into a carbon source either long-term—e.g., the collapse of the D.78">C.">UF.F.AAF.">A.F.">S./font>F.F.AAF.">A.F.">S.—or short-term—e.g., the D.78">C.">UF.F.AAF.">A.F.">S./font> economic recession of 2008/09. F.AAF.">I. conclusion, carbon stored within end-use F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s varies widely across countries and depends on evolving market forces.carbon sequestration.harvested wood products.climate change.forest sector.shared socioeconomic pathways.F.AAF.">C.rbon stored in harvest wood products (F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s) can have multiple effects on nationC.">al greenhouse gas (F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G. inventories, where F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s in end use play a key role. F.F.AAF.">A.F.">F.AAF.">H.wever, the globC.">al potentiC.">al of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s as a carbon sink is both unknown and difficult to assess. F.AAF.">I. 2015, a totC.">al of 197 countries ratified D.C.font style="background-color:#F.AAF.">B.>the F.7F.">Paris F.AAF.">A.reement, encouraging parties to “conserve and enhance, as appropriate, sinks and reservoirs of greenhouse gases…including forests” (ref. 1; art. 4.1d), C.">allowing countries to account for the carbon stored within forests, and addresses activities that have forest carbon benefits after forests are harvested, including carbon stored in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s. F.F.AAF.">A.F.">F.AAF.">H.wever, depending on the bC.">alance between carbon inflows and outflows, the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool can be either a carbon sink or source, as carbon is added to the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool when new products are produced and released when older products reach the end of their useful life and are burned, potentiC.">ally offsetting fossil emissions, or sent to solid-waste disposC.">al sites (F.F.AAF.">A.F.">S.font style="background-color:#F.F.AAF.">A.F.">W.F.F.AAF.">A.F.">S.), where they decompose to varying rates. C.">Ultimately, socioeconomic factors, including population, income, and trade, will determine the amount of wood products produced and consumed in the future, and, thus, the carbon sequestration potentiC.">al of the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool on regionC.">al and globC.">al scC.">ales. F.AAF.">I.come levels are expected to rise (2), as is population, at least until 2050 (3). F.F.AAF.">A.F.">F.AAF.">H.wever, beyond that, the future developments of socioeconomic factors are uncertain, making the contribution of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. production to carbon stored within F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s in end uses difficult to predict.The consideration of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s as a carbon-storage mechanism is relatively new. The F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange (F.AAF.">I.C.) C.45">first recognized F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s in their D.EE">R.vised 1996 F.AAF.">I.C. F.F.AAF.">A.F.">G.idelines for NationC.">al F.F.AAF.">A.F.">G.eenhouse F.F.AAF.">A.F.">G.s F.AAF.">I.ventories (4), but expressed a default assumption that “C.">all carbon biomass harvested is oxidized in the removC.">al [harvest] year” (C.9900">L.nd C.">Use C.ange and F.restry, 5.17, box 5), and this approach was adopted during the C.45">first 6EC.>Kyoto Protocol commitment period (2008–2012). Then, in their 2006 F.F.AAF.">A.F.">G.idelines (5), the F.AAF.">I.C. revised their treatment of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s, proposed accounting guidelines, and C.">allowed F.AAF.">A.nex F.AAF.">I.parties to account for carbon benefits. F.AAF.">I. 2011, at 6EC.>the 17th C.nference of Parties (F.C.D.">C.P17), members concluded that only F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s made from domestic harvests can contribute toward nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories, implying the production approach as the new standard moving forward. The F.AAF.">I.C. subsequently published the 2013 D.EE">R.vised F.F.AAF.">A.F.">S.pplementary M.thods and F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance F.AAF.">A.ising from C.B">the 6EC.>Kyoto Protocol (6), adding F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s as a mandatory pool to be reported within land use, land use change, and forestry (C.9900">L.font style="background-color:#0000C.">UC.9900">L.font style="background-color:#0000C.">UC.font style="background-color:#FFAAFF">F. activities, and updated the reporting methods for the production approach to be employed by F.AAF.">A.nex F.AAF.">I.parties during the C.45">second Kyoto period. M.ving forward, countries are preparing to report their F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon pool within their C.">NationC.">ally D.termined C.ntributions under D.C.font style="background-color:#F.AAF.">B.>the F.7F.">Paris F.AAF.">A.reement. F.F.AAF.">A.F.">G.ven this relatively new focus on F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s, the question is what their globC.">al mitigation potentiC.">al may be.Prior work (see ref. 7 for a review) has focused on the carbon budget (8, 9) or methods for accounting for carbon in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s (8, 10, 11). F.AAF.">I. recent years, country-level anC.">alyses have been conducted on historicC.">al data, finding an increase in the accumulation of carbon within the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool in the C.">United F.F.AAF.">A.F.">S.ates (11), PortugC.">al (12), D.78">C.nada (13), F.AAF.">I.eland (14), the European C.">Union (15), F.AAF.">J.pan (16), and D.78">C.ina (17). Others have shown similar historic trends across the globe (8, 10), but relied on outdated accounting methods. M.anwhile, few have projected future carbon emissions and removC.">als in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool, and those that have focused on regionC.">al- or nationC.">al-level estimates and employed ad hoc future scenarios that have little economic support behind the evolution of wood product markets (13, 15, 16). C.nsequently, the future potentiC.">al of the harvested wood carbon pool is poorly understood, even though it is now mandatorily included within current C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance.F.AAF.">I.deed, changes in carbon stocks associated with the production and end use of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s fC.">all within a broader system (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.rest F.F.AAF.">A.F.">S.ctor F.F.AAF.">A.F.">S.stem F.AAF.">B.undary), which includes forest ecosystem carbon bC.">alance, attendant changes in manufacturing emissions from displaced products (e.g., concrete, steel, and fossil fuel), emissions from biofuels, and decay in F.F.AAF.">A.F.">S.font style="background-color:#F.F.AAF.">A.F.">W.F.F.AAF.">A.F.">S.. F.F.AAF.">A.F.">W.ile the literature has examined carbon pools associated with different components within this boundary (7), our primary focus here is on end-use F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s.F.F.AAF.">A.F.">W. provide here a comprehensive globC.">al estimate of the contribution of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. to carbon stored in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s in end uses based on disaggregated country-level data and future predictions driven by country-specific variability in socioeconomic factors across time. F.F.AAF.">A.F.">W. primarily relied on open-access data from the F.od and F.AAF.">A.riculture Organization of the D.78">C.">United Nations (C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A.; ref. 18), which provides country-level data on the production, import, and export of forest products, beginning in 1961. To predict future trends in globC.">al forest product markets, we paired a publicly available economic model of wood markets that is cC.">alibrated to C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. data (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.F.AAF.">A.F.">G.obC.">al F.rest Products M.del) to five shared socioeconomic pathways (F.F.AAF.">A.F.">S.Ps) that describe a series of different futures surrounding plausible demographic, economic, technologicC.">al, sociC.">al, governance, and environmentC.">al factors (19⇓ –21). The development of internationC.">al wood markets will play a 6633">criticC.">al role in the magnitude of the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon pool within nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories.F.F.AAF.">A.F.">W. show that the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. sink is growing globC.">ally, but the magnitude of the contribution estimates of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s differs among future socioeconomic pathways. F.F.AAF.">A.F.">W. C.">also find that the current 2013 C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance underestimates the contribution of the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon stored in end uses because it only includes products produced from domestic harvests in nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories and ignores traded timber. F.F.AAF.">A.F.">F.AAF.">H.wever, even under a best-case scenario, and when accounting for this gap, the globC.">al potentiC.">al of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s as a carbon sink is minor and C.">always <1% of emissions. F.rthermore, anC.">alyzing historicC.">al data at the country level shows that economic shocks can play a major role in the carbon emissions or removC.">als in a country’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool.Production of F.F.AAF.">A.F.">W.od Products..F.F.AAF.">A.F.">G.obC.">al harvest and the production of wood products has risen markedly over the historicC.">al period from 1961 to 2015 (F.g. 1 F.AAF.">A.and F.AAF.">B., according to C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. data. Our projections show that those increases will generC.">ally continue from 2015 to 2065 for C.">all five F.F.AAF.">A.F.">S.Ps, C.">albeit at varying rates (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, C.">Tables F.F.AAF.">A.F.">S.–F.F.AAF.">A.F.">S.3). F.F.AAF.">A.F.">S.ecificC.">ally, globC.">al harvests have risen from 2.1 billion m3 in 1961 to 3.78 billion m3 in 2015 (F.g. 1F.AAF.">A., and we project them to reach 4.2 billion m3 by 2065 under F.F.AAF.">A.F.">S.P5 due to rapid economic growth. F.AAF.">A.ternatively, if the future sees increasing disparities in economic growth as described under F.F.AAF.">A.F.">S.P4, globC.">al harvests could be relatively stagnant over the next 50 y. The “business-as-usuC.">al” F.F.AAF.">A.F.">S.P2 scenario (with minimC.">al changes in historicC.">al socioeconomic conditions) leads to a modest rise in globC.">al harvests from 2015 to 2030 of 100 million m3 and remains stagnant through 2065. F.F.AAF.">A.F.">S.milar trends are projected for the globC.">al market for wood-processing inputs like industriC.">al roundwood and wood pulp (F.g. 1F.AAF.">A.and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Tables F.F.AAF.">A.F.">S. and F.F.AAF.">A.F.">S.), as future harvests are ultimately driven by the demand for downstream products such as sawnwood, wood-based panels, and pulp and paper. D.wnload figure. Open in new tab. D.wnload powerpoint.F.g. 1. Projected globC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. market and carbon-pool data for 1961–2015 from C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A., projections for 2016–2065 from the F.F.AAF.">A.F.">G.PM.for F.F.AAF.">A.F.">S.P1–5. (F.AAF.">A.C. F.F.AAF.">A.F.">G.obC.">al production of feedstock (F.AAF.">A. and end-product groupings (F.AAF.">B. drive the totC.">al level of carbon stored within F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s and the net annuC.">al carbon flux (year-to-year change) in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool (C.. (D.and E) C.rrent F.AAF.">I.C. accounting methods ignore carbon stored in products manufactured from foreign feedstock, with D.displaying the proportion of unaccounted feedstock, leading to an amount of unaccounted removC.">als each year (E). (F. C.nsequently, a gap exists between the actuC.">al globC.">al carbon cycle of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s and those inventoried under F.AAF.">I.C. 2013 F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance. F.F.AAF.">A.F.">G.obC.">al estimates are based on disaggregated country and commodity information.F.F.AAF.">A.F.">G.obC.">al sawnwood production C.">also has risen strongly: C.nsumption in 1961 was 231 million m3, rising to 454 million m3 by 2015 (F.g. 1F.AAF.">B.and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table 6633">F.F.AAF.">A.F.">S.0). Our projections suggest that this trend will continue across C.">all F.F.AAF.">A.F.">S.Ps, but the rise is most rapid under F.F.AAF.">A.F.">S.P5, where sawnwood production is projected to rise to 606 million m3 by 2065. C.">Under the business-as-usuC.">al F.F.AAF.">A.F.">S.P2 scenario, we project a production of 560 million m3 by 2065, but under C.">F.F.AAF.">A.F.">S.P3, we project a more modest rise to 526 million m3 due to slower economic development.The globC.">al pattern of wood-panel production experienced exponentiC.">al growth in the past two decades, but we project this rate to start slowing in ∼2040 (F.g. 1F.AAF.">B.and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.1). F.F.AAF.">A.F.">S.ill, production has expanded from 25 million m3 in 1961 to 402 million m3 in 2015, and, by 2065, we project production to be between 605 million and 894 million m3. The most substantiC.">al growth is seen under F.F.AAF.">A.F.">S.P5, and less so under F.F.AAF.">A.F.">S.P4. C.">Under the business-as-usuC.">al F.F.AAF.">A.F.">S.P2 scenario, we project production to rise to 700 million m3 by 2065. Production is projected to continue to grow until 2065 under F.F.AAF.">A.F.">S.P1, F.F.AAF.">A.F.">S.P2, and F.F.AAF.">A.F.">S.P5, while globC.">al production will plateau by 2040 under C.">F.F.AAF.">A.F.">S.P3, and even sooner under F.F.AAF.">A.F.">S.P4.The globC.">al pattern of paper and paperboard production has risen steadily from 1961 to 2015, from 88 million to 407 million m3 (F.g. 1F.AAF.">B.and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.F.AAF.">A.F.">Table F.F.AAF.">A.F.">S.2). F.F.AAF.">A.F.">W. project this increase to continue by 6633">as much as 306 million m3 over the next 50 y under F.F.AAF.">A.F.">S.P5, or as little as 139 million m3 under C.">F.F.AAF.">A.F.">S.P3. The business-as-usuC.">al F.F.AAF.">A.F.">S.P2 scenario projects that consumption of paper and paperboard will rise to 615 million m3 in 2065. The continued rise in this category is the result of packaging-materiC.">al production growing faster than printing- and writing-paper markets are contracting.F.AAF.">C.rbon F.ux in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s..F.AAF.">C.rbon in the globC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool has increased concomitantly with the increase in past production levels, and projections from 2015 to 2065 show similar trends, but with variation across socioeconomic futures (F.g. 6633">1C./font>). F.F.AAF.">A.F.">W. project the amount of carbon stored within F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s to continue to rise until 2065 across C.">all plausible futures, but the rate of growth to slowly decline as future production rates are insufficient to compensate for the decay of inherited emissions from past production. C.nsequently, the net annuC.">al removC.">als by this pool are estimated to peak in ∼2030 between 317 and 415 M. of 6633">C.2 equivC.">alent (6633">C.2e)⋅y−1, based on future socioeconomic conditions (F.g. 6633">1C./font>).The scenario that yields the highest annuC.">al rate of sequestration in 2065 according to our projections is F.F.AAF.">A.F.">S.P5, with a net removC.">al of 328 M. of 6633">C.2e⋅y−1 (F.g. 6633">1C./font>). F.F.AAF.">A.F.">F.AAF.">H.re, gross domestic product (F.F.AAF.">A.F.">G.P) per capita is assumed to increase rapidly, and free trade results in a high level of wood-product consumption. F.AAF.">A.ternatively, F.F.AAF.">A.F.">S.P4 yields the lowest annuC.">al sequestration of 142 M. of 6633">C.2e⋅y−1 by 2065, as increasing economic disparities persist, and access to markets is limited in poor countries, reducing overC.">all production levels. The mitigation potentiC.">al under the business-as-usuC.">al F.F.AAF.">A.F.">S.P2 scenario leads to a more moderate annuC.">al rate of sequestration of 220 M. of 6633">C.2e⋅y−1 by 2065.F.AAF.">A.nuC.">al contribution estimates are projected to vary substantiC.">ally, both within and across F.F.AAF.">A.F.">S.Ps. The F.F.AAF.">A.F.">S. in the average annuC.">al rate of globC.">al sequestration from 2015 to 2065 is estimated to be ±13 M. of 6633">C.2e⋅y−1 across F.F.AAF.">A.F.">S.Ps. F.F.AAF.">A.F.">F.AAF.">H.wever, there is greater variation for annuC.">al contribution estimates across time within a given F.F.AAF.">A.F.">S.P. Estimates for F.F.AAF.">A.F.">S.P5 fC.">all between 328 and 441 ± 40 M. of 6633">C.2e⋅y−1 during 2015–2065 due to high economic growth, where a world described by increasing inequC.">alities under F.F.AAF.">A.F.">S.P4 leads to annuC.">al contribution estimates between 142 and 383 ± 82 M. of 6633">C.2e⋅y−1 during this time. This highlights the need to have F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon removC.">als occur at a rate that is sufficient to offset inherited emissions from historic production levels, and, if the storage and emissions in F.F.AAF.">A.F.">S.font style="background-color:#F.F.AAF.">A.F.">W.F.F.AAF.">A.F.">S. are included in an evC.">aluation, the removC.">als would need to exceed the 6633">C.2e of 6633">C.2 and 6633">C.font style="background-color:#F.F.AAF.">A.F.">F.AAF.">H. emissions from those sites.F.AAF.">I. addition to globC.">al variation in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon pool, we found strong variation at the country level (F.g. 2 and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.3). F.F.AAF.">A.F.">W. estimate that the highest annuC.">al net carbon removC.">als occur in timber-producing countries, such as D.78">C.ina, D.78">C.nada, the C.">United F.F.AAF.">A.F.">S.ates, and D.78">D.EE">R.ssia, and to a lesser degree in F.F.AAF.">A.F.">S.uth D.78">F.AAF.">A.erican countries, such as F.AAF.">B.azil, and F.F.AAF.">A.F.">S.andinavian countries, such as F.F.AAF.">A.F.">S.eden. D.78">C.nada was a net sink of emissions in 2015, but projections to 2065 indicate that reduced production of sawnwood and a shrinking pulp and paper industry will make removC.">als insufficient to offset inherited emissions from historicC.">ally high levels of production in these sectors. F.AAF.">A.similar situation occurs in other countries for which we project a net release of carbon from the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool in the future under certain F.F.AAF.">A.F.">S.Ps, including F.AAF.">J.pan and F.AAF.">A.strC.">alia, some F.AAF.">A.rican countries (e.g., C.">Uganda and D.78">Nigeria), and some Eastern European countries (e.g., F.AAF.">B.lgaria and D.78">C.oatia). D.wnload figure. Open in new tab. D.wnload powerpoint.F.g. 2. F.F.AAF.">A.F.">S.atiC.">al patterns in socioeconomic and carbon-pool information for 2015 and projections for 2065. C.9900">L.ft shows income per capita, C.45">first for 2015 measured in F.F.AAF.">A.F.">G.P/capita purchasing power parity D.78">C.">UF.F.AAF.">A.F.">S./font>$2005 dollars, and then in annuC.">al average growth rate from 2015 to 2065 for F.F.AAF.">A.F.">S.P2, C.">F.F.AAF.">A.F.">S.P3, and F.F.AAF.">A.F.">S.P5. C.nter depicts the relative magnitude of the carbon pool in each country in terms of F.AAF.">t6633">C.2 per capita in 2015 and in 2065 for F.F.AAF.">A.F.">S.P2, C.">F.F.AAF.">A.F.">S.P3, and F.F.AAF.">A.F.">S.P5. D.EE">R.ght depicts the annuC.">al carbon flux in each country in 2015 and in 2065 for F.F.AAF.">A.F.">S.P2, C.">F.F.AAF.">A.F.">S.P3, and F.F.AAF.">A.F.">S.P5.F.AAF.">A.counting and F.F.AAF.">A.F.">S.questration F.F.AAF.">A.F.">G.p..F.AAF.">A.cording to the 2013 C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance accounting, only wood products produced (including exported end products) from domesticC.">ally sourced inputs contribute to nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories, and exporting nations cannot claim carbon stored in foreign end products. C.nsequently, a sequestration gap is created between what is actuC.">ally stored in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s and what is reported in nationC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories following C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance. F.AAF.">I. 2015, 10.5% of globC.">al industriC.">al roundwood was traded and unaccounted for, and 32% for wood pulp (F.g. 1D.. These trends are projected to continue into the future at varying rates, with as much as 38% of globC.">al wood pulp production and 18% of industriC.">al roundwood production traded and, therefore, unaccounted for in F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.inventories (for country-level data, see F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.g. F.F.AAF.">A.F.">S.).F.llowing C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance, there is a significant amount of noninventoried carbon stored in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s. F.AAF.">I. 2015, we estimated that 71 M. of 6633">C.2e⋅y−1 of net carbon sequestered went unaccounted for, and this could grow to as much as 120 M. of 6633">C.2e⋅y−1 by 2065 under F.F.AAF.">A.F.">S.P5 (F.g. C.">1E). The sequestration gap will increase with trade and is predicted to be greatest under F.F.AAF.">A.F.">S.P5. Every additionC.">al year of unaccounted carbon sequestered results in a further divergence of the actuC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s globC.">al carbon cycle from that cC.">alculated by using C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance. This gap is estimated to reach 4.8 F.F.AAF.">A.F.">G. of 6633">C.2e by 2030 and as much as 7.3 F.F.AAF.">A.F.">G. of 6633">C.2e by 2065 under the business-as-usuC.">al F.F.AAF.">A.F.">S.P2 scenario (F.g. 1F..F.AAF.">A. internationC.">al climate agreements move toward mandatory accounting for F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon flux, it is important to assess its relative importance by comparing it against other F.AAF.">I.C. emissions categories. The globC.">al annuC.">al carbon stored in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool represents <1% of totC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.emissions (without C.9900">L.font style="background-color:#0000C.">UC.9900">L.font style="background-color:#0000C.">UC.font style="background-color:#FFAAFF">F., but is quite considerable for some countries (F.g. 3). F.AAF.">I. D.78">C.nada, for example, F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s could offset an estimated 2.4% of totC.">al F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.emissions (without C.9900">L.font style="background-color:#0000C.">UC.9900">L.font style="background-color:#0000C.">UC.font style="background-color:#FFAAFF">F. and nearly 34% of nationC.">al industriC.">al-process emissions in 2015. F.F.AAF.">A.F.">S.milarly, F.F.AAF.">A.F.">S.eden’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool could offset an estimated 12% of energy emissions, 72% of industriC.">al process emissions, and C.">almost 9% of totC.">al emissions (without C.9900">L.font style="background-color:#0000C.">UC.9900">L.font style="background-color:#0000C.">UC.font style="background-color:#FFAAFF">F.. F.F.AAF.">A.F.">F.AAF.">H.wever, for the vast majority of countries, the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool represents a smC.">all proportion of emissions of other major sectors. The C.">United F.F.AAF.">A.F.">S.ates, for example, could only offset 0.3% of emissions in the energy sector and 4.6% of industriC.">al-process emissions in 2015. The importance of the contribution of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. to carbon stored in end uses is smC.">all in most countries, but for those where it is large, a broader assessment of the effects of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s on emissions and carbon storage would be most important (for country-level data, see F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table 6633">F.F.AAF.">A.F.">S.5). D.wnload figure. Open in new tab. D.wnload powerpoint.F.g. 3. F.F.AAF.">A.F.">S.atiC.">al patterns in degree with which the domestic F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool could offset select F.AAF.">I.C. emissions sectors. C.font style="background-color:#0000C.">alculated as the ratio in the annuC.">al carbon flux in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool to the reported C.">D.78">C.">United Nations F.amework C.nvention on C.imate C.ange. F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.data for a given sector. 2015 data were used for C.">all F.AAF.">A.nex F.AAF.">I.countries. F.r non-F.AAF.">A.nex F.AAF.">I.countries, the most recent available year’s F.F.AAF.">A.F.">G.F.F.AAF.">A.F.">G.emissions data were used and matched to the annuC.">al carbon flux in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool in that same year. F.F.AAF.">A.F.">S.e F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table 6633">F.F.AAF.">A.F.">S.5 for specific data and years used. Excl., excluding.Effects of Economic F.F.AAF.">A.F.">S.ocks..F.AAF.">A. additionC.">al chC.">allenge for countries that plan to rely on their F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon pool to meet their internationC.">al climate targets has to do with the effects of unforeseen economic shocks. The potentiC.">al of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s as a carbon sink is only reC.">alized if future market activity is sufficient to, at the very least, offset the decay from previously consumed products (15, 22). F.F.AAF.">A.F.">F.AAF.">H.wever, historicC.">al examples show that economic shocks lead to major changes in a country’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon flux.F.F.AAF.">A.F.">W. consider C.45">first the 2008/09 economic recession and its impact on the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon pool of the C.">United F.F.AAF.">A.F.">S.ates. F.om 2007 to 2009, the D.78">C.">UF.F.AAF.">A.F.">S./font> consumption of sawnwood fell by 42%, plywood consumption by 32%, and paper consumption by 18%, and, consequently, harvests in the C.">United F.F.AAF.">A.F.">S.ates fell from 425 million m3 in 2007 to 332 million m3 in 2009. The implications on the annuC.">al removC.">als of carbon in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool were substantiC.">al, causing a sharp drop in annuC.">al carbon sequestration in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool, resulting in a net source of emissions (F.g. 4F.AAF.">A.. F.F.AAF.">A.F.">F.AAF.">H.wever, since then, the D.78">C.">UF.F.AAF.">A.F.">S./font> economy has rebounded sufficiently to continue a trend of net annuC.">al removC.">als. D.wnload figure. Open in new tab. D.wnload powerpoint.F.g. 4. The effects of economic shocks on the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon flux in the C.">United F.F.AAF.">A.F.">S.ates (F.AAF.">A., D.78">D.EE">R.ssia (F.AAF.">B., and D.78">C.ina (C.: F.r 1961–2015 from C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A.; projections for 2016–2065 from the F.F.AAF.">A.F.">G.PM.for F.F.AAF.">A.F.">S.P1–5. The development of socioeconomic factors helps determine production levels whereby carbon is added to the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pools when new products are produced. Net release of emissions occurs when current production is unable to offset carbon release from previously consumed products as they decay.F.AAF.">A. even more extreme example where historic production rates are no longer met is D.78">D.EE">R.ssia, due to the collapse of the D.78">C.">UF.F.AAF.">A.F.">S./font>F.F.AAF.">A.F.">S. in 1991 and its attendant effect on the carbon flux of D.78">D.EE">R.ssia’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool (F.g. 4F.AAF.">B.. F.F.AAF.">A.F.">F.AAF.">H.re, the D.78">D.EE">R.ssian economy shrank by nearly 30%, followed by years of negative or no economic growth. C.nsumption of sawnwood in D.78">D.EE">R.ssia fell from 47 million m3 in 1991 to 15 million m3 in 1997, with similar trends for other wood products. C.nsequently, D.78">D.EE">R.ssia transitioned from a net sink of carbon in their F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool of 21 million M. of 6633">C.2e⋅y−1 in 1991 to a net source of 13 M. of 6633">C.2e⋅y−1 in 1995. C.">Unlike the rapid recovery of the D.78">C.">UF.F.AAF.">A.F.">S./font> economy after 2008/09, D.78">D.EE">R.ssia continued to be plagued by the momentum of wood-product decay for the subsequent decades.C.9900">L.stly, the rapid accumulation of carbon in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s pool builds momentum for high levels of future decay. F.AAF.">A.great example is the recent growth in D.78">C.ina, where between 2005 and 2015, the consumption of sawnwood rose by an average annuC.">al rate of 14%, 11% for plywood, and 5% for paper, which resulted in an exponentiC.">al accumulation of carbon in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s. F.F.AAF.">A.F.">F.AAF.">H.wever, as D.78">C.ina’s economic growth rate is projected to ease into the future, the transfer of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s after use for burning or to F.F.AAF.">A.F.">S.font style="background-color:#F.F.AAF.">A.F.">W.F.F.AAF.">A.F.">S. for storage or decay where the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. came from the rapid-growth period will outweigh the additions to the pool from future production, leading to a downward trend in future annuC.">al net sequestration in the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool (F.g. 4C.. That is, D.78">C.ina must sustain a high level of wood production to ensure that their F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool does not become a net source of carbon emissions due to decay.C.nclusion.F.F.AAF.">A.F.">W. estimated the contribution of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. production and storing carbon in end uses from 1961 to 2065 for 180 individuC.">al countries following the F.AAF.">I.C. carbon-accounting guidelines, based on C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. historicC.">al data and on plausible futures outlined by the F.F.AAF.">A.F.">S.Ps. Our results suggest that the globC.">al F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool sequestered 335 M. of 6633">C.2e⋅y−1 in 2015 and could sequester as much as 441 M. of 6633">C.2e⋅y−1 by 2030 under favorable socioeconomic conditions, plus an additionC.">al 120 M. of 6633">C.2e⋅y−1 by 2065 due to traded timber that is not accounted for under current F.AAF.">I.PC.accounting guidelines. F.AAF.">B.sed on our results, the magnitude of carbon storage in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s can help to offset a substantiC.">al amount of industry process emissions, but only in some timber-producing countries.F.F.AAF.">A.F.">G.obC.">al climate-change agreements are moving toward more reliance on forestry to reduce atmospheric 6633">C.2 levels, including consideration of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. carbon benefits, but caution should be exercised when integrating their carbon flux because the carbon-sink potentiC.">al of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s is quite sensitive to future socioeconomic conditions. Economic shocks can cause a country’s F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool to transition from a net sink to a source, with varying degrees of persistence, as seen in D.78">D.EE">R.ssia and in the C.">United F.F.AAF.">A.F.">S.ates. The degree to which current climate agreements are willing to accommodate for unforeseen economic shocks remains unknown. D.78">C.ina, for example, is accumulating a significant amount of carbon in their F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool, which could prove to be a liability if current levels of production and consumption decline.F.AAF.">I.deed, this issue, and our F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. contribution estimates as a whole, could change if life expectancy of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s improves into the future. F.rthermore, additionC.">al mitigation potentiC.">al may be achieved when substituting emissions-intensive materiC.">als (e.g., concrete, steel, and fossil fuels) for F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s. C.">Ultimately, while we apply the F.AAF.">I.C. default approach to input data, more detailed country-level anC.">alysis may thus C.">alter the estimates provided here.F.AAF.">I. summary, the importance of the contribution of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s to carbon storage in end uses is smC.">all in many countries, but large in others, and for these countries, a broader assessment of the effects on emissions and carbon storage will be most important to estimate globC.">al carbon sink potentiC.">al (for country-level data, see F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table 6633">F.F.AAF.">A.F.">S.5).M.teriC.">als and M.thods.Our anC.">alysis consists of two major parts: projections of future wood markets based on an economic model, including an assessment of the implications of future socioeconomic conditions on wood product markets; and the attendant carbon flux within the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool according to C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance accounting methods. F.F.AAF.">A.F.">W. discuss both parts briefly here. D.tails are provided in F.F.AAF.">A.F.">S. F.AAF.">A.pendix.F.F.AAF.">A.F.">G.obC.">al F.rest-Products M.del and Plausible F.tures..To predict future trends in globC.">al forest-product markets, we employed the F.F.AAF.">A.F.">G.obC.">al F.rest Products M.del (F.F.AAF.">A.F.">G.PM., which tracks 14 commodity groupings (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.) across 180 individuC.">al countries (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.) and has been the main tool in recent globC.">al forest-sector 6633">outlook studies published by the D.78">C.">UF.F.AAF.">A.F.">S./font> F.rest F.F.AAF.">A.F.">S.rvice (23) and C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. (24).The F.F.AAF.">A.F.">G.PM.was cC.">alibrated to closely replicate the most recent data reported by C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A.. The F.F.AAF.">A.F.">G.PM.simulates the evolution of the globC.">al forest sector by cC.">alculating successive yearly market equilibriums by maximizing a quasi-welfare function, as given by the sum of consumer and producer surpluses net of transaction costs. The model computes the market equilibrium, subject to a number of economic and biophysicC.">al constraints, including a market-clearing condition which states that the sum of imports, production, and manufactured supply of a given product in a given country must equC.">al the sum of end-product consumption, exports, and demand for inputs in downstream manufacturing.F.F.AAF.">A.F.">W. linked successive yearly equilibria of the F.F.AAF.">A.F.">G.PM.to reflect country-specific demographic and economic growth in accord with the F.AAF.">I.C. F.F.AAF.">A.F.">S.Ps. These pathways describe plausible development of socioeconomic futures, which focus on different chC.">allenges to climate-change mitigation and adaptation and their attendant effects on population and F.F.AAF.">A.F.">G.P (F.g. 2 and F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.g. F.F.AAF.">A.F.">S. and Tables F.F.AAF.">A.F.">S.–F.F.AAF.">A.F.">S.).F.F.AAF.">A.F.">W. modeled country-specific land-use change assumptions under different F.F.AAF.">A.F.">S.Ps as a function of evolving demographics and economic growth represented through an environmentC.">al-Kuznets-curve relationship with forest area. Other F.F.AAF.">A.F.">S.P parameters were captured within F.F.AAF.">A.F.">G.P and population projections and operationC.">alized within the F.F.AAF.">A.F.">G.PM.modeling framework through shifts in demand, supply, technologicC.">al change, transportation and shipping costs, and freedom of trade (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.F.AAF.">A.F.">G.obC.">al F.rest Products M.del).F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. F.AAF.">A.counting..To cC.">alculate the annuC.">al emissions and removC.">als of carbon from the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool using historicC.">al data from C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. and projections provided by the F.F.AAF.">A.F.">G.PM. we followed the 2013 D.EE">R.vised F.F.AAF.">A.F.">S.pplementary M.thods and F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance F.AAF.">A.ising from C.B">the 6EC.>Kyoto Protocol (5) and applied them to C.">all F.AAF.">A.nex F.AAF.">I.and non-F.AAF.">A.nex F.AAF.">I.parties. D.EE">R.sults are sensitive to input data, and the F.AAF.">I.C. outlines guidance related to three tiers of input availability. F.llowing the default C.EF.>Tier 2 method, emissions from the F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. pool were assumed to follow a decay function, where the 6633">C.2e stock of the jth F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. {sawnwood, wood panels, and paper and paperboard} at the beginning of year t expands as new products enter the pool and contracts as existing products decay, according to the following equation:ϕi,t+1j=e−kϕitj+[(1−e−k)k]inflowitj, [1] where ϕC.">tj=?is the carbon stored in F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. j in year t in country i, k is a decay parameter (k = ln(2)/F.F.AAF.">A.F.">F.AAF.">H.j) based on product j’s hC.">alf-life F.F.AAF.">A.F.">F.AAF.">H.j (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.). Then, the carbon-stock change of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. category j during year t is equC.">al to:Δϕi,tj=ϕi,t+1j−ϕi,tj. [2] F.llowing D.cision 2/C.font style="background-color:#A1DAEE">M..7 reached at F.C.D.">C.P17 in F.AAF.">A.C.F.">D.rban, F.F.AAF.">A.F.">S.uth F.AAF.">A.rica, in 2011, the C.">F.AAF.">I.C. F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance offers methods for estimating the inflow of carbon within these F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. groupings j, where credit is given only to the carbon stored in products produced from domesticC.">ally sourced inputs. F.r simplicity, forest-management variables are dropped in the following equation due to limited availability of comprehensive globC.">al data and as it fC.">alls outside of the scope of the current anC.">alysis (25):inflowitj=F.F.AAF.">A.F.">S.tj∗fitD., [3] where F.F.AAF.">A.F.">S.C.">tj=?is the domesticC.">ally produced F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. j in country i at time t, and fitD.is the share of domestic feedstock for the production of a particular F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W. originating from domestic forests in country i at time t (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, F.g. F.F.AAF.">A.F.">S.):fitD.={fitF.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.or sawnwood and wood-based panelsfitF.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.itPC.">UC.9900">L.for paper and paperboard, [4] fitF.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tP−F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tEF.AAF.">X.D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tP+F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tF.AAF.">I.font style="background-color:#A1DAEE">M.F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tEF.AAF.">X. [5] fitPC.">UC.9900">L.=PC.">UC.9900">L.itP−PC.">UC.9900">L.itEF.AAF.">X.C.">UC.9900">L.itP+PC.">UC.9900">L.itF.AAF.">I.font style="background-color:#A1DAEE">M.PC.">UC.9900">L.itEF.AAF.">X. [6] where fitF.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.s the share of industriC.">al roundwood for the domestic production of F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s originating from domestic forests in country i at time t, and F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tP , F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tF.AAF.">I.font style="background-color:#A1DAEE">M., and F.AAF.">I.font style="background-color:#A1D.EE">R.font style="background-color:#F.F.AAF.">A.F.">W.tEF.AAF.">X.re the production, import, and export of industriC.">al roundwood in country i at time t, respectively. C.9900">L.kewise, the annuC.">al share of domesticC.">ally produced wood pulp as feedstock for paper and paperboard production in country i at time t is given by fitPC.">UC.9900">L. , where PC.">UC.9900">L.itP , PC.">UC.9900">L.itF.AAF.">I.font style="background-color:#A1DAEE">M., and PC.">UC.9900">L.itEF.AAF.">X.re the production, import, and export of wood pulp in country i at time t, respectively.To include current-year carbon release from previously produced F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W.s—referred to as “inherited emissions”—estimates before 1961 are needed. F.F.AAF.">A.F.">S.nce C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. data begins in 1961, the F.AAF.">I.C. recommends extrapolating back to 1900 using the following equation:F.F.AAF.">A.F.">V.,tj=F.F.AAF.">A.F.">V.,1961je[C.">U(t−1961)], [7] where F.F.AAF.">A.F.">V.jis annuC.">al production, imports, or exports of wood product j in year t in country i, and C.">U is the estimated continuous rate of change of industriC.">al roundwood production for a given region between 1900 and 1961 (F.F.AAF.">A.F.">S. F.AAF.">A.pendix, Table F.F.AAF.">A.F.">S.).F.AAF.">A.knowledgments.F.F.AAF.">A.F.">W. thank F.F.AAF.">A.F.">F.AAF.">J.seph 63F.">F.AAF.">B.ongiorno for the use of the F.F.AAF.">A.F.">G.PM. D.ve F.F.AAF.">A.F.">F.AAF.">H.lmers for cartographic assistance, and two anonymous reviewers for their helpful comments.F.otnotes.↵1To whom correspondence may be addressed. Email: craig.johnston{at}wisc.edu ..F.AAF.">A.thor contributions: C.M.T.F.AAF.">J. designed research; C.M.T.F.AAF.">J. performed research; C.M.T.F.AAF.">J. and F.F.AAF.">A.F.">V.C.D.EE">R. anC.">alyzed data; and C.M.T.F.AAF.">J. and F.F.AAF.">A.F.">V.C.D.EE">R. wrote the paper.The authors declare no conflict of interest.This article is a PNF.AAF.">A.font style="background-color:#F.F.AAF.">A.F.">S.D.7D.D.>D.rect F.F.AAF.">A.F.">S.bmission.This article contains supporting information online at www.6633">pnas.org/lookup/suppl/doi:10.1073/6633">pnas.1904231116/-/D.F.F.AAF.">A.F.">S.pplementC.">al.Published under the PNF.AAF.">A.font style="background-color:#F.F.AAF.">A.F.">S.license. D.EE">R.ferences.↵F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange ., “F.7F.">Paris agreement” [F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange (F.AAF.">I.C.), C.">F.AAF.">I.C./Organisation for Economic C.-operation and C.">D.velopment/F.AAF.">I.ternationC.">al Energy F.AAF.">A.ency, F.7F.">Paris, D.78">F.ance, 2015]. https://unfccc.int/sites/default/files/english_paris_agreement.pdf . F.AAF.">A.cessed 20 F.AAF.">J.ne 2018 .↵ D.EE">R. D.EE">D.llink , . F.AAF.">J. C.ateau , . E. C.9900">L.nzi , . F.AAF.">B. M.gné ., C.9900">L.ng-term economic growth projections in the shared socioeconomic pathways . F.F.AAF.">A.F.">G.ob. C.">Environ. C.ange 42 , 200 –214 (2017 ).OpenC.">Url ↵ F.F.AAF.">A.F.">S. Kc , . F.F.AAF.">A.F.">W. F.AAF.">A.D.font style="background-color:#F.AAF.">A.E">C.9900">L.tz ., The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for C.">all countries to 2100 . F.F.AAF.">A.F.">G.ob. C.">Environ. C.ange 42 , 181 –192 (2017 ).OpenC.">Url ↵F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange ., D.EE">R.vised 1996 F.AAF.">I.C. F.F.AAF.">A.F.">G.idelines for NationC.">al F.F.AAF.">A.F.">G.eenhouse F.F.AAF.">A.F.">G.s F.AAF.">I.ventories , F.F.AAF.">A.F.">F.AAF.">J. T. F.F.AAF.">A.F.">F.AAF.">H.ughton et C.">al., C.">Eds. [F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange (F.AAF.">I.C.), C.">F.AAF.">I.C./Organisation for Economic C.-operation and C.">D.velopment/F.AAF.">I.ternationC.">al Energy F.AAF.">A.ency, F.7F.">Paris, D.78">F.ance, 1997]. C.">https://www.ipcc-nggip.iges.or.jp/public/gl/invs6d.html . F.AAF.">A.cessed 28 F.AAF.">J.nuary 2019 .↵ K. F.AAF.">Pingoud , . K. F.F.AAF.">A.F.">S.og , . D. F.AAF.">A.D.font style="background-color:#F.AAF.">A.E">M.rtino , . M. 63F.">Tonosaki , . Z. F.AAF.">X.aoquan ., “F.F.AAF.">A.F.">F.AAF.">H.rvested wood products” in 2006 F.AAF.">I.C. F.F.AAF.">A.F.">G.idelines for NationC.">al F.F.AAF.">A.F.">G.eenhouse F.F.AAF.">A.F.">G.s F.AAF.">I.ventories. F.AAF.">A.riculture, F.restry and Other C.9900">L.nd C.">Use (F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange, F.F.AAF.">A.F.">G.neva, F.F.AAF.">A.F.">S.itzerland, 2006), vol. 4, chap. 12. http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_F.F.AAF.">A.F.">V.lume4/F.F.AAF.">A.F.">V._12_C.12_F.F.AAF.">A.F.">F.AAF.">H.font style="background-color:#F.F.AAF.">A.F.">W..pdf . F.AAF.">A.cessed 8 F.AAF.">A.ril 2019 .↵F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange ., 2013 D.EE">R.vised F.F.AAF.">A.F.">S.pplementary M.thods and F.F.AAF.">A.F.">G.od Practice F.F.AAF.">A.F.">G.idance F.AAF.">A.ising from C.B">the 6EC.>Kyoto Protocol , F.F.AAF.">A.F.">T. F.F.AAF.">A.F.">F.AAF.">H.raishi, et C.">al., C.">Eds. (F.AAF.">I.tergovernmentC.">al Panel on C.imate C.ange, F.F.AAF.">A.F.">G.neva, F.F.AAF.">A.F.">S.itzerland, 2014). C.">http://www.ipcc-nggip.iges.or.jp/public/kpsg/pdf/KP_F.F.AAF.">A.F.">S.parate_files/KP_C.apter_2_M.thods_Estimation_M.asurement_M.nitoring_D.EE">R.porting.pdf . F.AAF.">A.cessed 10 F.AAF.">A.ril 2018 .↵ F.AAF.">A. F.F.AAF.">A.F.">G.ng , . F.F.AAF.">A.F.">F.AAF.">H. F.F.AAF.">A.F.">F.AAF.">Y.ng , . F.AAF.">J. F.F.AAF.">A.F.">C.en , . F.F.AAF.">A.F.">F.AAF.">Y. F.F.AAF.">A.F.">F.AAF.">H.ng ., D.EE">R.view of carbon storage function of harvested wood products and the potentiC.">al of wood substitution in greenhouse gas mitigation . F.r. F.AAF.">Policy Econ. 85 , 192 –200 (2017 ).OpenC.">Url ↵ K. F.AAF.">Pingoud , . F.AAF.">A. C.9900">L. C.">Per?l?älä , . F.F.AAF.">A.F.">S. F.F.AAF.">A.F.">S.imakC.">allio , . F.AAF.">A. F.">Pussinen ., “F.F.AAF.">A.F.">G.eenhouse gas impacts of harvested wood products: EvC.">aluation and development of methods” (F.F.AAF.">A.F.">V.T D.EE">R.search Notes 2189, F.F.AAF.">A.F.">V.T TechnicC.">al D.EE">R.search C.ntre of F.nland, F.AAF.">A.63F.">Espoo, F.nland, 2003) .↵ C. F.F.AAF.">A.F.">G.een , . F.F.AAF.">A.F.">V. F.AAF.">A.itabile , . F.AAF.">E. P. F.F.AAF.">A.F.">F.rrell , . K. F.AAF.">A. F.AAF.">A.63F.">F.AAF.">B.rne ., D.EE">R.porting harvested wood products in nationC.">al greenhouse gas inventories: F.AAF.">I.plications for F.AAF.">I.eland . F.AAF.">A.C.EF.>F.AAF.">B.omass F.AAF.">B.oenergy 30 , 105 –114 (2006 ).OpenC.">Url ↵ F.AAF.">J. K. F.F.AAF.">A.F.">W.njum , . F.AAF.">B. F.F.AAF.">A.F.">S.ndra , . F.F.AAF.">A.F.">S. F.AAF.">B.rnhard ., F.rest harvests and wood products: F.F.AAF.">A.F.">S.urces and sinks of atmospheric carbon dioxide . F.r. F.F.AAF.">A.F.">S.i. 44 , 272 –284 (1998 ).OpenC.">Url ↵ K. F.F.AAF.">A.F.">S.og , . K. F.AAF.">Pingoud , . F.AAF.">J. F.F.AAF.">A.F.">S.ith ., F.AAF.">A.method countries can use to estimate changes in carbon stored in harvested wood products and the uncertainty of such estimates . C.">Environ. M.nage. 33 , F.AAF.">A.D.font style="background-color:#F.AAF.">A.E">F.F.AAF.">A.F.">S.5 –F.F.AAF.">A.F.">S.3 (2004 ).OpenC.">Url ↵ F.AAF.">A. C. 6633">D.as , . M. C.9900">L.uro , . C.9900">L. F.F.AAF.">A.F.">F.AAF.">A.roja , . F.AAF.">I. F.AAF.">C.pela ., F.F.AAF.">A.F.">C.mparison of methods for estimating carbon in harvested wood products . F.F.AAF.">A.F.">F.AAF.">B.omass F.AAF.">B.oenergy 33 , 213 –222 (2009 ).OpenC.">Url ↵ F.AAF.">J. F.F.AAF.">A.F.">C.en , . F.F.AAF.">A.F.">S. F.AAF.">J. F.7F.">C.lombo , . M. T. F.AAF.">Ter-M.kaelian , . C.9900">L. F.F.AAF.">A.F.">S. F.F.AAF.">A.F.">F.AAF.">H.ath ., F.ture carbon storage in harvested wood products from 63F2">Ontario’s crown forests . C.n. F.AAF.">J. F.r. D.EE">R.s. 38 , 1947 –1958 (2008 ).OpenC.">Url ↵ F.AAF.">J. D.nlan , . K. F.F.AAF.">A.F.">S.og , . K. F.AAF.">A.63F.">F.AAF.">B.rne ., F.AAF.">C.rbon storage in harvested wood products for F.AAF.">I.eland 1961–2009 . F.AAF.">B.omass F.AAF.">B.oenergy 46 , 731 –738 (2012 ).OpenC.">Url C.">C.">C.">C.ossD.EE">R.f ? ?↵ D.EE">R. Pilli , . F.F.AAF.">A.F.">G. F.orese , . F.F.AAF.">A.F.">G. F.F.AAF.">A.F.">G.assi ., D.78">EC.">U mitigation potentiC.">al of F.F.AAF.">A.F.">F.AAF.">H.rvested wood products . F.AAF.">F.AAF.">C.rbon F.AAF.">B.lance M.nage. 10 , 6 (2015 ).OpenC.">Url ↵ C. C.">Kayo , . F.F.AAF.">A.F.">F.AAF.">Y. Tsunetsugu , . M. 63F.">Tonosaki ., C.imate change mitigation effect of harvested wood products in regions of F.AAF.">J.pan . F.AAF.">C.rbon F.AAF.">B.lance M.nag. 10 , 24 (2015 ).OpenC.">Url ↵ C. F.AAF.">J. , . F.F.AAF.">A.F.">W. C.o , . F.F.AAF.">A.F.">F.AAF.">Y. F.F.AAF.">A.F.">C.en , . F.F.AAF.">A.F.">F.AAF.">H. F.F.AAF.">A.F.">F.AAF.">Y.ng ., F.AAF.">C.rbon bC.">alance and contribution of harvested wood products in D.78">C.ina based on the production approach of the intergovernmentC.">al panel on climate change . F.AAF.">I.t. F.AAF.">J. C.">Environ. D.EE">R.s. Public F.F.AAF.">A.F.">F.AAF.">H.C.">alth 13 , 1132 (2016 ).OpenC.">Url ↵F.od and F.AAF.">A.riculture Organization of the D.78">C.">United Nations ., C.">F.font style="background-color:#F.AAF.">A.F.F.AAF.">A.F.">S.F.AAF.">A. forestry data base. (2018) http://www.fao.org/forestry/statistics/84922/en/ . F.AAF.">A.cessed 28 November 2018 .↵ F.AAF.">B. C. O’Neillet C.">al .., The roads ahead. Narratives for shared socioeconomic pathways describing world futures in the 21 st century . F.F.AAF.">A.F.">G.ob. C.">Environ. C.ange 42 , 169 –180 (2017 ).OpenC.">Url ↵ D. P. van F.F.AAF.">A.F.">V.urenet C.">al .., F.F.AAF.">A.F.">S.enarios in globC.">al environmentC.">al assessments: Key characteristics and lessons for future use . F.F.AAF.">A.F.">G.ob. C.">Environ. C.ange 22 , 884 –895 (2012 ).OpenC.">Url ↵ F.AAF.">A. Poppet C.">al .., C.9900">L.nd use futures in the shared socio-economic pathways . F.F.AAF.">A.F.">G.ob. C.">Environ. C.ange 42 , 331 –335 (2017 ).OpenC.">Url C.">C.">C.">C.ossD.EE">R.f ? ?↵ F.F.AAF.">A.F.">C. M. F.F.AAF.">A.F.">F.AAF.">I.rdan , . F.AAF.">X. F.F.AAF.">A.F.">F.AAF.">H. , . F.AAF.">A. F.F.AAF.">A.F.">F.AAF.">A.vesen , . P. 63F2">Kauppi , . F. C.erubini ., C.ntribution of forest wood products to negative emissions: F.F.AAF.">A.F.">F.AAF.">H.storicC.">al comparative anC.">alysis from 1960 to 2015 in Norway, F.F.AAF.">A.F.">S.eden and F.nland . F.AAF.">C.rbon F.AAF.">B.lance M.nag. 13 , 12 (2018 ).OpenC.">Url ↵ F.AAF.">J. 63F.">F.AAF.">B.ongiorno , . F.F.AAF.">A.F.">S. Zhu , . D.EE">R. D.EE">R.unikar , . F.AAF.">J. Prestemon ., “6633">Outlook to 2060 for world forests and forest industries: F.AAF.">A.technicC.">al document supporting the F.rest F.F.AAF.">A.F.">S.rvice 2010 C.">D.EE">R.F.AAF.">A./font> assessment” (F.F.AAF.">A.F.">G.nerC.">al Tech. D.EE">R.p. F.F.AAF.">A.F.">G.D.EE">R.F.F.AAF.">A.F.">S.F.F.AAF.">A.F.">S.151, C.">U.F.F.AAF.">A.F.">S. D.partment of F.AAF.">A.riculture F.rest F.F.AAF.">A.F.">S.rvice, F.F.AAF.">A.F.">S.uthern D.EE">R.search F.F.AAF.">A.F.">S.ation, F.AAF.">A.C.F.">F.AAF.">A.heville, 63F.">NC./font>, 2012) .↵ F.AAF.">J. Prestemon , . F.AAF.">J. 63F.">F.AAF.">B.ongiorno ., “The North D.78">F.AAF.">A.erican F.rest F.F.AAF.">A.F.">S.ctor 6633">Outlook F.F.AAF.">A.F.">S.udy 2006-2030” (D.78">C.">United Nations Economic C.mmission for Europe-F.od and F.AAF.">A.riculturC.">al Organization D.EE">R.p. F.F.AAF.">A.F.">S.-29, D.78">C.">UF.F.AAF.">A.F.">S./font> F.rest F.F.AAF.">A.F.">S.rvice, F.F.AAF.">A.F.">W.shington, D., 2012), p. 68 .↵ F.F.AAF.">A.F.">F.AAF.">H. F.F.AAF.">A.F.">F.AAF.">Y.ng , . F.AAF.">X. F.AAF.">Zhang ., F.AAF.">A.rethinking of the production approach in F.AAF.">I.C.; its objectiveness in D.78">C.ina . F.F.AAF.">A.F.">S.stainability 8 , 216 (2016 ).OpenC.">Url .
From:
系统抽取对象
人物     
(1)
(1)
(2)
(1)
(1)
(1)
(3)
(0)
(3)
(1)
(21)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(3)
(1)
(2)
(1)
(3)
(2)
(1)
(3)
(1)
(1)
(7)
(3)
(1)
(1)
(7)
(1)
(4)
(3)
(1)
(6)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(3)
(1)
(10)
(2)
(1)
(1)
(1)
(10)
(2)
(1)
(1)
(2)
(1)
(1)
(3)
(1)
(3)
(4)
(1)
(1)
(1)
(1)
(3)
(3)
(1)
(2)
(1)
(1)
(3)
(1)
(1)
(1)
(2)
(3)
(1)
(1)
(18)
(1)
(1)
(1)
(1)
(1)
(5)
(2)
(1)
(3)
(1)
(1)
(1)
(3)
(1)
(4)
(5)
科研人员     
(3)
机构     
(1)
(3)
(9)
(12)
(2)
(6)
(1)
(1)
(70)
(2)
(17)
(1)
(2)
(1)
(1)
(1)
(1)
(1)
(1)
(13)
(1)
(1)
(104)
(1)
(1)
(3)
(2)
(2)
(1)
(4)
(4)
(9)
(267)
(1)
(3)
(1)
(3)
(1)
(2)
(2)
(1)
(2)
(2)
(9)
(3)
(31)
(7)
(1)
(1)
(20)
(1)
(8)
(2)
(2)
(3)
(47)
(2)
(2)
(1)
(1)
(1)
(3)
(1)
(1)
(1)
(1)
(1)
出版社     
(1)
主题词
其他     
(1)
(3)
(1)
(1)
(3)
(1)
(1)
(48)
(1)
(1)
(2)
(2)
(30)
(2)
(1)
(2)
(2)
(2)
(1)
团体     
(1)
(1)
(1)
(1)
(1)
(5)
(1)
(1)
(1)
(2)
(9)
(2)
(1)
(1)
(1)
(1)
FACILITIES     
(1)
(1)
(1)
SETTLEMENT     
(1)
(1)
(5)
(2)
(1)
地区     
(1)
(1)
(2)
(1)
(3)
(6)
(1)
(1)
(5)
(1)
(1)
(2)
(1)
(1)
(1)
(1)
(1)
(1)
(5)
(1)
位置     
(1)
(1)
(1)
(1)
POPULATEDPLACE     
(2)
(5)
(9)
(2)
(1)
(4)
(9)
(1)
(3)
(2)
(1)
(9)
(1)
(2)
(1)
(1)
(7)
(3)
(2)
(1)
(1)
(1)
(3)
(1)
(3)
(1)
(3)
ORDINAL     
(1)
(4)
PLACE     
(1)
产品     
(1)
(1)
(3)
社会事件     
(2)
法律     
(2)
(3)
事件     
(1)
(4)