目录
2018年第4期(发布时间: Dec 1, 2018 发布者:闫亚飞)  下载: 2018年第4期.doc       全选  导出
1   2018-12-01 10:51:19.847 α-转移葡萄糖苷酶的筛选优化及高效表达 (点击量:2)

项目概况

  α-转移葡萄糖苷酶(α-transglucosidase E.C.2.4.1.24)可专一性地切开糖类底物中非还原端的α-1、4糖苷键,释放出葡萄糖,还可将游离出的葡萄糖残基以α-1、6糖苷键转移到另一个糖类底物上,得到非发酵性的低聚异麦芽糖(IMO,其包括异麦芽糖、潘糖、异麦芽三糖及四糖以上的低聚糖)、糖脂或糖肽等。该酶是工业上生产IMO的必需酶制剂之一,具有巨大的应用价值。

  本项目利用黑曲霉高效表达系统,通过传统诱变的方法筛选出多分支、短分支的突变菌株。最终获得稳定性好、α-转移葡萄糖苷酶产量高的黑曲霉工程菌株,为其工业化生产奠定基础,以适应IMO生产工艺的需求。

  市场前景

  目前,国内α-转移葡萄糖苷酶的用量虽然很大,但由于成本过高而难以实现工业化生产,仍然依赖进口,这些限制因素也导致国内IMO的生产受到严重制约。国外酶制剂公司天野株式会社的α-转移葡萄糖苷酶,占领了国内大部分市场。因此,获得高活性的α-转移葡萄糖苷酶及其相应的稳定、高产的生产菌株,可替代国外公司的现有产品,打破国际公司在中国的垄断。

  技术特点

  本项目筛选得到了稳定、高效表达α-转移葡萄糖苷酶的生产菌株,获得的α-转移葡萄糖苷酶酶活可达到6699-23709 U/ml。

  投资与效益分析

  潜在市场:低聚异麦芽糖加工酶的市场超过1000万。

  研究阶段

  目前项目正在进行α-转移葡萄糖苷酶突变菌株的7L小试实验,优化发酵条件。项目关键技术已申请多项专利。

  发布及更新时间

2018年5月

2   2018-12-01 10:50:54.65 储成才研究组发现控制水稻氮高效、高产与早熟关键基因 (点击量:1)

氮是植物需求量最大的矿质元素,也是促进作物增产的最重要因素之一。据统计,全世界每年施用氮肥超过1.2亿吨。氮肥大量施用不仅增加了农业生产成本,更为重要的是导致了包括气候变化、土壤酸化及水体富营养化等一系列环境灾难。此外,大量施用氮肥导致的作物“贪青晚熟”(开花和成熟延迟)现象,不仅影响(双季或三季中)后茬作物的播种,在高纬度地区,还可能由于后期温度较低而影响作物灌浆,导致作物产量的大幅降低。目前,主要作物诸如水稻、小麦等的氮肥利用效率低于40%,因此,如何提高作物氮肥利用效率增加作物产量,同时避免“贪青晚熟”一直是作物品种改良研究中的重要课题。

水稻是世界上最重要的粮食作物,全球超过1/2的人口以稻米为主食,其中约90%水稻在亚洲种植消费。亚洲栽培稻 (Oryza sativa L.) 分为两个主要亚种——粳稻 (Japonica) 与籼稻 (Indica),它们在形态、发育与生理等方面都表现出不同的特征,且籼稻氮肥利用效率显著高于粳稻。

中国科学院遗传与发育生物学研究所储成才研究组研究表明,籼稻品种利用硝酸盐的能力显著高于粳稻品种,并证明编码硝酸盐转运蛋白基因——OsNRT1.1B的单碱基变异是导致粳稻与籼稻间氮肥利用效率差异的重要原因 (Hu et al., Nature Genetics, 2015)。OsNRT1.1B与拟南芥中的硝酸盐感应器(transceptor)AtNRT1.1具有保守的生物学功能。有意思的是,水稻基因组中存在三个AtNRT1.1同源蛋白,依据序列相似性高低依次命名为OsNRT1.1A、OsNRT1.1B和OsNRT1.1C。亚细胞定位分析显示,OsNRT1.1B主要定位于细胞膜,而OsNRT1.1A则主要定位于液泡膜,表明OsNRT1.1A和OsNRT1.1B存在明显的功能分化。更为有意思的是,OsNRT1.1B受硝酸盐诱导,而OsNRT1.1A受铵盐诱导。进一步的功能研究表明,OsNRT1.1B主要参与水稻对外界硝酸盐刺激的初级应答反应,而OsNRT1.1A则参与水稻应对胞内硝酸盐及铵盐利用的基础代谢功能的调节。植物利用氮源主要有硝态氮和铵态氮两种形式。水稻作为水生植物,铵态氮是其主要利用方式,OsNRT1.1A的这种功能分化意味着其对水稻的环境适应性极其重要。

水稻中存在数十个硝酸盐转运蛋白,导致其存在相当程度的功能冗余,大多编码硝酸盐转运蛋白的突变体均没有明显的表型差异,然而,OsNRT1.1A的突变导致水稻植株矮化,开花期延长,产量降低。而过量表达OsNRT1.1A在不同水稻品种及在不同氮肥条件下均可显著提高水稻生物量和产量,并能大幅缩短水稻成熟时间。在北京、长沙及海南等多年多点的田间试验表明,OsNRT1.1A过表达植株在高氮和低氮条件下均表现出显著的增产效果。尤其在低氮条件下,OsNRT1.1A过表达株系小区产量以及氮利用效率最高可提高至60%,而且在高氮条件下相较于对照品种可提早开花2周以上,从而有效缩短了水稻成熟时间。在拟南芥中过量表达OsNRT1.1A也能使拟南芥开花大幅提前,并显著增加拟南芥生物量和种子量。这些结果证明,该项研究成果为培育兼具高产与早熟水稻品种,克服农业生产中高肥导致的“贪青晚熟”问题提供了解决方案,并有可能延伸到其他作物品种,具有巨大的应用潜力。

该项研究成果于2018年2月23日发表在Plant Cell(doi: 10.1105/tpc.17.00809)杂志上。3月1日Plant Cell刊发了题为“The Real Yield Deal? Nitrate Transporter Expression Boosts Yield and Accelerates Maturation”的评论文章,对这一成果给予了高度评价,认为“虽然现有结果尚难保证通过这一基因能够解决世界饥饿问题。然而,该基因对提高氮利用率、加快成熟和增加产量的协同改良结果表明,该基因应该是人们寻找产量真正决定因子研究中值得关注的!”(The promising but preliminary results described here can’t promise that this transporter will provide the solution to world hunger. However, the combination of improved N use, accelerated maturity, and improved yield indicate that this one is worth watching in the search for the real yield deal.)

王威博士和胡斌副研究员为论文共同第一作者。本项目得到国家科技部和中国科学院分子模块设计育种创新体系先导科技专项资助。

3   2018-12-01 10:50:31.267 丁梅研究组揭示神经突生长调控新机制 (点击量:1)

神经突正确延伸对于神经网络的形成至关重要。过去几十年的研究发现了数十种导向信号分子,它们作用于生长锥表面受体,通过调控细胞骨架的动态运动,控制神经突的靶向性延伸。然而,神经元轴、树突在生长和延伸过程中往往遭遇多种导向信号,神经元如何同时解读多种不同信号,并做出最终的单一性选择,其机制并不完全清楚。

  中国科学院遗传与发育生物学研究所丁梅研究组发现,线虫RME神经突延伸过程中同时暴露于Slit和Wnt两种信号分子。虽然RME神经元表达Slit受体-Robo,但其延伸并不受Slit调控。相反,Robo与酪氨酸受体家族孤单受体Ror2形成受体复合物,帮助Wnt信号的传递。Robo 在线虫中的唯一同源蛋白SAX-3可以直接结合Wnt分子,并协同其他Wnt受体,将信号传递到下游效应分子Dsh。Dsh蛋白是RME神经突延伸的重要驱动,在RME神经突生长侧非对称聚集。有意思的是:Robo也存在与Dsh类似的非对称分布,且Dsh的极性分布依赖于Robo。这表明Robo的非对称性分布促进了RME神经突在特定方向的延伸。该研究揭示了Robo受体与Wnt-Ror信号通路的相互作用机制,暗示:在不同信号分子共存的情况下,原本认为是针对某一特定信号的受体其实可以通过与其他受体互作,变换自身感应特质。这一现象的揭示,有助于增进我们对复杂在体环境下神经突如何整合不同信号的认识,为探索神经网络发育形成调控机制提供了新见解。

  该研究结果于2018年2月20日在线发表于PNAS杂志上(DOI:10.1073/pnas.1717468115)。丁梅研究组博士研究生王家明为该论文第一作者。这一工作得到了国家自然科学基金委和国家重点基础研究发展计划的资助。

4   2018-12-01 10:50:10.697 李家洋研究组在植物程序性细胞死亡调控上取得重要进展 (点击量:2)

程序性细胞死亡是一种受到遗传调控的细胞死亡方式,在动植物的生长发育和抵御生物与非生物胁迫过程中均具有重要作用。已有研究表明叶绿体和线粒体都在植物程序性细胞死亡中发挥重要作用,但此二者是否存在信号交流,以及如何协同作用共同调控程序性细胞死亡等方面尚不清楚。此前,中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室李家洋研究组克隆了一个拟南芥细胞死亡突变体mosaic death 1 (mod1)。MOD1编码一个烯酰-ACP还原酶,对于叶绿体中脂肪酸合成至关重要(Mou et al., Plant Cell, 2000)。通过对mod1抑制突变体的研究发现,mod1突变体中存在活性氧积累,而线粒体电子传递链复合体I的活性降低能够抑制mod1中活性氧的积累,从而抑制细胞死亡的发生(Wu et al., Cell Res, 2015)。这一结果暗示,在MOD1突变导致的细胞死亡过程中可能存在叶绿体到线粒体的信息交流。

  通过对不影响线粒体复合体I活性的mod1抑制突变体进行研究,李家洋研究组筛选并克隆了3个新的抑制基因:质体定位的NAD依赖的苹果酸脱氢酶(plNAD-MDH),叶绿体被膜定位的二羧酸转运蛋白1 (DiT1),和线粒体定位的苹果酸脱氢酶1 (mMDH1)。这三个基因都是植物苹果酸-草酰乙酸穿梭途径中的重要成员,每个基因的功能丧失均可以抑制mod1中活性氧的积累和细胞死亡的发生。实验结果表明,MOD1功能降低导致其底物NADH在叶绿体中大量积累,进而使得携带着还原力的苹果酸通过苹果酸-草酰乙酸穿梭途径进入线粒体中,导致线粒体中NADH水平的升高,引发活性氧的产生和细胞死亡的发生。进一步研究表明,该途径在连续光照导致的活性氧的产生与氧化胁迫中发挥重要功能。此外,苹果酸处理HeLa细胞能够诱导活性氧的产生和细胞死亡的发生,且线粒体定位的苹果酸脱氢酶在其中发挥重要作用。该研究结果证明了在植物的程序性细胞死亡途径中存在叶绿体到线粒体的信息交流(Chloroplast-To-Mitochondria communication),苹果酸-草酰乙酸穿梭途径在其中发挥关键作用,且在动物中存在保守的细胞质到线粒体的细胞死亡调控机制。

  该研究成果于2018年3月14日在Cell Research杂志在线发表(DOI:10.1038/s41422-018-0024-8)。李家洋研究组博士研究生赵艳楠、博士后罗丽兰和黄勋研究组助理研究员许捷思为该论文的共同第一作者,李家洋研究员、黄勋研究员和余泓副研究员为共同通讯作者。合作者主要包括中科院遗传发育所的褚金芳博士、左建儒研究员、王国栋研究员。该研究得到了国家自然科学基金项目和中国科学院战略先导专项的资助。

5   2018-12-01 10:49:48.81 韩方普研究组在CRISPR-Cas9玉米基因组编辑方法研究中取得新进展 (点击量:1)

基因组编辑是生命科学新兴的技术并被迅速在每个实验室应用,特别是基于CRISPR-Cas9系统的基因编辑工具近年来发展较快,在医疗、农业等领域展现巨大的应用潜力。然而此前,在玉米等部分作物中基于农杆菌转化的载体进行基因组编辑的效率偏低,在一定程度影响到该技术的高效利用尤其是基于CRISPR-cas9系统的高通量突变allele筛选。因此,如何提高编辑效率是大家关注的问题。另一个非常关键的问题是如何降低脱靶或不脱靶,这也是实际应用的限制因素。

  中国科学院遗传与发育生物学研究所韩方普实验室前期选择了若干玉米减数分裂特异基因的启动子用于驱动Cas9基因的表达,希望在配子中实现高效的基因组编辑,从而在T1代获得大量纯合或双等位的突变体。其中用到的一个为玉米DMC1基因启动子,构建了DPC(DMC1 promoter-controlled) CRISPR-Cas9载体系统,用该载体系统转化玉米幼胚后,结果意外发现:凡是抗性愈伤组织靶位点均发生基因组编辑,另一个非常有趣的结果是:T0代植株中出现60-70%左右的纯合或双等位的突变体,其余为杂合或嵌合的突变体植株。并且这些纯合或双等位突变体植株(再生自一个抗性愈伤组织)含有不同的突变allele类型。通过对多个基因靶点(包括一个标记基因zb7,突变能产生白化的表型)的编辑实验,验证了该载体系统的高效性(下图为对玉米zb7基因靶点的编辑)。这一技术对韩方普研究组研究细胞分裂突变体的基因功能提供了非常快速高效的方法,当代纯合或嵌合突变体就可以直接观察细胞学及染色体行为与功能。此外,也证实了产生的突变能够稳定遗传到T1代,并且新的突变allele类型在T1代也被发现。通过全基因组测序分析,在预测的1000多个潜在脱靶位点没有发现脱靶突变。由于DMC1基因在进化中非常保守,该基因的启动子也可能有潜力在别的植物中发挥类似的作用,虽然科学家在小麦中的初步尝试结果不甚理想。

  该研究成果于2018年3月23日在线发表于Plant Biotechnology Journal杂志上(DOI:10.1111/pbi.12920)。韩方普研究组博士生冯超为该论文的第一作者,该研究得到转基因重大专项及科技部育种专项的资助。

6   2018-12-01 10:49:27.327 吴青峰研究组国际合作研究揭示丘脑核团发生的时空调控机制----中国科学院遗传与发育生物学研究所 (点击量:2)

中枢神经系统主要由层状结构和核团结构组成,人们对于大脑皮层在内的层状结构形成机制了解较多,而对核脑结构所依赖的发育机制了解较少。丘脑由数十个空间上排列复杂的核团构成,对感觉信息的传递和大脑皮层的功能都具有至关重要的调节作用。之前的研究通过群体水平的谱系追踪确定了丘脑投射核团中的神经元主要来自于pTH-R和pTH-C两个神经前体区,但是丘脑神经前体细胞如何产生神经元并组成丘脑各个核团的机制仍不清楚。

  中国科学院遗传与发育生物学研究所吴青峰研究组联合美国明尼苏达大学、宾夕法尼亚大学,用单细胞克隆分析法对丘脑核团发生机制展开研究。使用三种不同CreER驱动子小鼠结合报告基因小鼠MADM(基于双标记的马赛克分析)系统在克隆水平上追踪丘脑神经前体细胞谱系。研究发现如下:第一,丘脑神经前体细胞随着时序的推移,发生了从对称性增殖性分裂向不对称性神经发生性分裂再到对称性神经发生性分裂的转换;第二,每个神经前体细胞所产生的子代神经元群(又称为克隆)分布于多个核团中而不是单一的核团,对称性分裂所产生的克隆比不对称性分裂所产生的克隆要跨越更多的核团;第三,更重要的是,具有相似空间位置的神经前体细胞所产生的克隆往往分布于一组特定的核团群中。而且功能不同的核团群在起源上并没有发生完全的隔离,而神经前体细胞所编码的空间信息才是决定核团生成的关键因素;最后对中间前体细胞的单克隆分析显示中间前体细胞只能产生2-4个神经元,相当一部分的姐妹神经元并没有分布于单个核团中,而是迁移到不同的核团中执行不同的功能,表明姐妹神经元的命运不完全相同。此研究为破解核团结构的组织原则奠定了深厚的基础。

  该研究于2018年4月23日在线发表于PLOS Biology杂志上(DOI:10.1371/journal.pbio.2005211),文章题目为In Vivo Clonal Analysis Reveals Spatiotemporal Regulation of Thalamic Nucleogenesis。该研究主要由明尼苏达大学Nakagawa教授、吴青峰研究员和黄政豪等共同完成实验和分析。遗传发育所的穆文辉博士与郭曦泽参与了数据分析。本研究得到国家自然科学基金、中国科学院先导专项A和分子发育生物学国家重点实验室的支持。